

Written Methods		Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	Write and calculate mathematical statements for \div using the x tables they know progressing to formal written methods.		Divide numbers up to 4 digits by a one-digit $194 \div 6$ number using the formal written method of short division and interpret remainders $192 \div 6$ appropriately for the $=32$ context	Divide numbers up to 4 -digits $\mathrm{Ny}{ }^{1 / 4 m}$ a two-digit whole number using the formal written method of short division where appropriate for the context
Developing conceptual understanding	$6 \div 2=3$ by sharing into 2 groups and by grabbing groups of 2 How many 2s?	$15 \div 3=5$ in each group (sharing) Link to fractions $15 \div 3=5$ groups of 3 (grouping) $40 \div 2=5$ Use ranguaye ui uivision mikeu to tades e.g. $2 \times 6=12$ so $12 \div 2=6$ How many 2s?	Grouping using partitioning $43 \div 3$ If I know 10×3... $43 \div 3$ $30 \div 3+13 \div 3$ Use lanquage of division linked to tables \square How many 3s?	Grouping using partitioning $196 \div 6$ If I know $3 \times 6 \ldots$ then $30 \times 6 \ldots$ 'Chunking up' on a number line $196 \div 6=32$ r 4 Use language of division linked to tables. \square	$192 \div 6$ using place value counters to support written method Exchange 100 for ten 10 s 19 tens into groups of 6 3 groups so that is 30×6, exchange remaining 10 for ten 1 s \square So $192 \div 6=32$	$564 \div 13=43 \text { r } 5=43!$ $1 \begin{aligned} & \\ & 1_{3} \\ & {4.58} \cdot 0^{11} 0 } \end{aligned} \quad=43.38 \ldots$ Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
With jottings ... or in your head	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods	Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1 ; multiplying together three numbers Recognise and use factor pairs and commutativity in mental calculations	Multiply and divide numbers mentally drawing upon known facts Multiply and divide whole numbers and those involving decimals by 10,100 and 1000	Perform mental calculations, including with mixed operations and large numbers
Just know it!	Count in multiples of twos, fives and tens	Recall and use x and \div facts for the 2,5 and $10 \times$ tables, including recognising odd and even numbers.	Recall and use x and \div facts for the 3,4 and 8 times tables.	Recall x and : facts for x tables up to 12 x 12.	Recall prime numbers up to 19 know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	
Year	1	2	3	4	5	6
	Count back in 2 s	Division facts ($2 \times$ table)	Review division facts (2x, 5x, 10x table)	Division facts ($4 \mathrm{x}, 8 \mathrm{x}$ tables) 10 times smaller	Division facts ($4 \mathrm{x}, 8 \mathrm{x}$ tables) 100, 1000 times smaller	Division facts (up to 12×12)
	Count back in 10 s	Division facts ($10 \times$ table)	Division facts ($4 \times$ table)	Division facts ($3 \mathrm{x}, 6 \mathrm{x}, 12 \mathrm{x}$ tables)	Division facts ($3 \mathrm{x}, 6 \mathrm{x}, 12 \mathrm{x}$ tables) Partition to divide mentally	Partition to divide mentally
	Halves up to 10	Halves up to 20	Halve two digit numbers	Halve larger numbers and decimals	Halve larger numbers and decimals	Halve larger numbers and decimals
Foundations	Count back in 5 s	Division facts ($5 \times$ table)	Division facts ($8 \times$ table)	Division facts (3x, 9x tables)	Division facts ($3 \mathrm{x}, 9 \mathrm{x}$ tables) 100, 1000 times smaller	Division facts (up to 12×12)
	Halve multiples of 10	Count back in 35	Division facts ($3 \times$ table)	Division facts (11x, 7x tables)	Review division facts (11x, 7x tables) Partition decimals to divide mentally	Partition to divide mentally
	How many 2s? 5s? 10s?	Review division facts ($2 \mathrm{x}, 5 \mathrm{x}, 10 \mathrm{x}$ table)	Division facts ($6 \times$ table) or review others	Division facts (6x, 12x tables)	Review division facts ($6 \mathrm{x}, 12 \mathrm{x}$ tables) Halve larger numbers and decimals	Halve larger numbers and decimals

